
MA 3046 - Matrix Analysis
Laboratory Number 7

LU Decomposition and Numerical Accuracy

Gaussian elimination, in it’s most “vanilla” form, i.e. without any row interchange,
provides a simple algorithm, perhaps even deceptively so, for solving the system of linear
equations

Ax = b , A ∈ Cum×m (1)

We simply use elementary row operations of the form:

Ri ← Ri − `ikRk , i > k (2)

to sequentially reduce the m× (n+ 1) augmented matrix to echelon (augmented) form,
i.e. £

A
... b

¤ → £
U

... z
¤

(Here, `ik = ãik/ãkk, and the tildes indicate we must use the changed elements that emerge
during elimination of the augmented matrix, and k denotes the current pivot row or column.
Note also we commonly refer to the diagonal elements, i.e. the ãkk as the pivots.)

One interesting perspective on Gaussian elimination produces, as a “free” natural
byproduct, another factorization of A. This basic decomposition (factorization) follows di-
rectly from the fact that every elementary row operation of the form (2) above corresponds
to multiplication on the left by a corresponding (lower-triangular) elementary matrix, and
the inverses of these elementary matrices, as well as certain products of their inverses are
easily determined. Specifically, if

L(k) · · ·L(2)L(1) £A ... b
¤
=
£
U

... z
¤

then £
A

... b
¤
= L(1)

−1
L(2)

−1 · · ·L(k)−1| {z }
L

£
U

... z
¤

Comparing the first block elements on the left and right yields:

A = LU (3)

where L can be shown to be lower triangular with ones on the diagonal and subdiagonal
elements precisely equal to the `ik described above, and U, as already seen in Gaussian
elimination, will be upper triangular. Furthermore, the observation about values of the `ik
allows us to build L, “on the fly,” and for no cost, as Gaussian elimination proceeds to
construct U. Moreover, since the subdiagonal elements of A are zeroed out during the
elimination, and since we never need to store elements that we know ahead of time will
have a specific value, then we can in fact store the subdiagonal elements of L in the space
“vacated” by the zeros created during elimination. Therefore, all the information needed
to recover L and U can be stored in the space originally occupied by A. Finally, a
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basic computational complexity analysis shows that the cost of Gaussian elimination, and
hence of LU factorization, is “only” approximately 2

3m
3 flops, or about half the cost of

finding the QR factorization for the same A.

Moreover, even incorporating row interchanges (pivoting) produces only a minor and
almost equally simple to obtain variant of the factorization. Hopefully though, by now, we
are also starting to view all such theoretical claims from the slightly jaundiced viewpoint
of how well they actually play out when implemented for real matrices, on real computers
which have real storage and execution speed limitations, and which must use real software
and floating-point arithmetic. In this lab, we shall use a couple of very rudimentary m-file
implementation of variants of LU decomposition, plus MATLAB’s built-in LU function to
investigate some of the differences and agreements between theory and reality a bit more.

First of all, there turn out to be several mathematically equivalent ways to implement
the construction of U. More interestingly, and hopefully by now not unexpectedly, these
different implementations, while mathematically equivalent, do not in fact produce equiva-
lently efficient code when implemented on real computers. To help better understand this,
we start with the observation that, at the first stage of Gaussian elimination, we eliminate
below the diagonal in the first column of A by multiplying on the left by:

L(1) =


1 0 0 · · · 0
−`21 1 0 · · · 0
−`31 0 1 · · · 0
...

...
...
...
...
...
...

−`m1 0 0 · · · 1

 ≡
 1

... 0
. . . . . . . . .

−`(1) ... I



where

`(1) =


`21
`31
...
`m1

 ≡

ã21/ã11
ã31/ã11
...

ãm1/ã11


(Note the tildes here are actually superflous, since eliminating in the first column occurs
before any other elements of A have been changed yet.) If we block A similarly, i.e.

A =

 a11
... a(1)

H

. . . . . . . . . . .

c(1)
... A(1)


where the values of a(1)

H

, c(1) and A(1) are clear from the context, then we can easily
show

U
(1)
work = L

(1)A =

 a11
... a(1)

H

. . . . . . . . . . . . . . . . . . . . .

0
... A(1) − `(1)a(1)H
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But we also observe the computation needed to update of lower right hand “working”
block in Uwork, which is formulated here as a rank one outer product, can in fact be
implemented in four equivalent ways:

(i) Element by element - i.e. with multiple for loops, i.e.

for i=2:m; for j=2:m A(i,j) = A(i,j) - L(i,j)∗A(1,j);end;end
(ii) Row by row - i.e.

for i=2:m; A(i,2:m) = A(i,2:m) - L(i,1)∗A(1,2:m);end
(iii) Column by column - i.e.

for j=2:m; A(2:m,j) = A(2:m,j) - A(1,j)∗L(2:m,1);end
(iv) By computing the result directly as a MATLAB primitive, i.e.

A(2:m,2:m) = A(2:m,2:m) - L(2:m,1)∗A(1,2:m)

(Note all of these assume the values of matL(2 : m, 1) were computed ahead of time
and stored in another array.) Furtheremore, similar analyses can be shown to apply to
all subsequent updates that occur as we proceed through the rest of the steps of the
factorization. Although we shall not pursue this issue in any greater depth here, you
should realize that which of these is best in any specific application involves such subtle
considerations as:

• Is the language compiled, or interpreted?
• Does the language store arrays as successive rows, or as successive columns?
• Does the language support primitive matrix operations, e.g. the BLAS?

One concern that we cannot duck, however, is the effects of floating-point arithmetic.
In the case of Gaussian elimination and LU factorization, the single most important issue
in this arena is the effect of small pivots. Specifically, we can easily see from (2) that
when akk is (relatively) small, then `kk is (relatively) large. In finite precision, because
of the need to align the decimal point before adding or subtracting, a large multiplier in

Ri ← Ri − `ikRk , i > k

will, effectively, replace Ri by `ikRk, producing a matrix (Uwork) with two almost linearly
dependent rows. Such a matrix will, of course, be nearly singular, i.e. very ill-conditioned.
Any subseqent calculations with this matrix will almost certainly produce garbage. So,
“vanilla” Gaussian elimination is simply a non-starter for practical matrix computation!

Fortunately, there is an easy fix for this. We can simply interchange rows (or even
columns), so that, whenever we eliminate in a column, the largest (in magnitude) element
in the current working column is the pivot. This will ensure that all of the `ik have
a magnitude of one or less. Moreover, when, for what ever reasons, row interchanges
must be incorporated, theory also tells us that we can then produce the so-called PLU
factorization, i.e.

PA = LU (4)
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In this factorization, P is a permutation matrix, and, furthermore, the algorithm for find-
ing P, L and U should not be significantly more difficult that the algorithm for finding L
and U without pivoting. There is one crucial caution we must mention, however. Par-
tial pivoting can be viewed as a method for precluding the introduction of an artificially
ill-conditioned matrix U during the elimintion process. Nothing, including any type of
pivoting, will likely prevent the introduction of an ill-conditioned U when the original
matrix A is will-conditioned!

In order to both study the actual flow of the calculations in this algorithm, and
also to observe actual effects of finite precision arithmetic, we provide several new pro-
grams, gepp steps.m, gepp steps chop.m, lupp chop.m, fwd solve chop.m, and
fp solve.m. You should observe that, based on observations from previous labs, Gaussian
elimination and LU factorization are implemented using option (iii) above, i.e. column by
column updates. We have also, as in previous codes, in one of them, utilized chop( ) to
simulate the effects of low-digit finite precision arithmetic, which should allow us to observe
significant effects in matrices of reasonably small size. We must immediately add, how-
ever, that MATLAB already implements LU decomposition with its own, built-in lu( )
command, which we shall also study to some degree. Obviously, the MATLAB version
should be preferred for real applications.

Of course, in numerical analysis, the mere fact that we can perform a computation,
e.g. the LU decomposition, is usually of little interest unless performing that computa-
tion actually provides some tangible benefit in terms of either computational efficiency or
accuracy. So, even though we can theoretically obtain P, L and U as free byproducts of
elimination, why bother? There are two answers for this question. The first is that, once
we have P, L and U we can solve

Ax = b

as
L z = Pb

Ux = z
(5)

Since each of the systems in (5) is already triangular, each of those equations can be solved
in aboutm2 flops, with no need for elimination, a cost negligible when dealing with systems
of any real size compared to the approximately 2

3m
3 flops required for elimination on the

original matrix A. (Also, multiplication by P is in fact only a rearrangement of subscripts,
not a computation!) But wait! Don’t we have to pay the 2

3m
3 cost anyway to find P, L

and U? That’s true. But, in fact, many practical applications occur when we must solve a
given system, repeatedly, with the same left hand side (A), but different right-hand sides,
i.e. we must solve

Ax(k) = b(k) , k = 1, 2, . . .

For such systems, if we utilize the PLU decomposition, we must pay the full 23m
3 cost

only once, i.e. only for k = 1. If we then simply save P, L andU, all subsequent solutions
cost only 2m2, i.e. they are essentially free!
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Lastly, we close the lab with two short programs, timing lu.m and timing solve.m,
which uses the by-now familiar tic and toc routines to confirm our earlier statements about
the relative computation complexity of the different algorithms for factoring matrices, and
for solving the basic systems of equations.
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Name:

MA 3046 - Matrix Analysis
Laboratory Number 7

LU Decomposition and Numerical Accuracy

1. Login to your workstation and start MATLAB. Then, using any web browser, link to
the course laboratories home page and download the programs:

gepp steps.m, gepp steps chop.m, lupp chop.m, fpsolve chop.m

fwd solve chop.m, time ge.m, and time solve.m

plus the data file lu methods.mat to your working space. In addition, make sure the
files

ge basic.m, ge steps chop.m, and fwd solve chop.m

used in earlier laboratories, are available in your work space.

2. Next, give the command

load lu methods

and verify that you have created the matrices and vectors:

A1 =


2.03 1.00 9.32 5.25
−2.01 −0.98 −10.5 −3.31
6.04 7.47 4.19 6.72
2.72 4.45 8.46 8.38

 , b1 =


1
1
1
1



A2 =

 4.01 5.90 5.18
−1.39 −2.31 −1.70
7.56 12.0 9.42

 and b2 =

 16.4
−5.20
29.1


respectively.
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3. Using MATLAB’s cond( ), determine the condition number of A1

κ(A1) =

Then, using MATLAB’s backslash command, find the solution of:

(A1) x = b1

and record it:

x1 =




Approximately how many digits of x1 should be correct, and why?

4. Give the command

uwork = ge basic([ A1 b1]) ;

Observe the process of Gaussian elimination, without pivoting. Look especially for the
appearance of small pivots. Record the final result

uwork =





What is the condition of the portion of uwork corresponding to the matrix U from
Gaussian elimination:

κ(U1basic) =

Why is this result either reasonable or not reasonable based on the theory discussed in
class?
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5. Open the MATLAB text editor, and study the programs

gepp steps.m and gepp steps chop.m

until you feel comfortable with their general logic and flow. Then give the commands:ds

global NDIGITS

NDIGITS = 3

(Note that these set all future programs that end with chop to simulate a three-digit,
rounding decimal machine, until a different value of NDIGITS is provided.)

6. Give the command

uwork = gepp steps([ A1 b1]) ;

Observe the process of Gaussian elimination with partial pivoting. Look especially for the
appearance of small pivots. (There should not be any! Why?) Record the final result

uwork =





What is the condition of the portion of uwork corresponding to the matrix U from
Gaussian elimination:

κ(U1pp) =

How do this compare with the condition number of the U in part 4, and how do you
explain the difference?
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7. Give the command

uwork = gepp steps chop([ A1 b1]) ;

Observe the process of Gaussian elimination with partial pivoting now in a simulated
three-digit machine. (There should not be any! Why?) Record the final result

uwork =





What, if any significant differences do you see between this augmented echelon matrix
and the one found using full MATLAB precision in part 6?

8. Using the bwd solve chop command from previous labs, compute the solution corre-
sponding to the (augmented) echelon matrix in part 6 above:

x13 =




and compare this result to the full MATLAB precision solution found in part 3.
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9. Using MATLAB lu command to determine the matrices L1,U1 andP1 corresponding
to A1:

L1 =





U1 =




.

P1 =




To what degree do these look reasonable or not in light of applicable theory?
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10. Using the matrices L1, U1 and P1 produced in part 9, compute

P1 ∗A1 =




and

L1 ∗U1 =




Why do or do not these values agree with theory?

Check your conclusion by computing

P1 ∗A1− L1 ∗U1
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11. Using the P1, L1 andU1 determined above, and the normal MATLAB \ command,
solve the two equations

(L1)z = (P1)b1

(U1)x = z ,

where b1 was created in part 2 above. Solution:

z =




and

x̃ =





Compare this result to the solution x1 obtained from the backslash command in part 3.

12. Using your texteditor, open program lupp chop.m and study it until you are com-
fortable that it correctly implements LU decomposition with partial pivoting. Also con-
sider how other equivalent implementations might be coded. Then also look at programs
fwd solve chop.m, bwd solve chop.m and fpsolve chop.m until you are also com-
fortable that these correctly implement the solution of

Ax = b
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13. Give the command:

[ L13 U13 P13 ] = lupp chop( A1 )

and record the results

L13 =





U13 =




.

P13 =





Compare these matrices to those computed in part 9. Do the two sets of matrices appear
to reasonably agree in the context of the different precisions used? If not, can you see a
reason why not? Does L13 ∗U13 still reasonably approximate P13 ∗A1?
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14. Next, give the commands

A = A1 and b = b1

and then: fpsolve chop

x̃13 =




Compare this answer to the one you computed in part 8 and 11. How many correct digits
does this solution appear to have? What, if anything, does that suggest?

15. Using MATLAB’s cond( ), determine the condition number of A2

κ(A2) =

Then, using MATLAB’s backslash command, find the solution of

(A2) x = b2

x2 =




Approximately how many digits of x should be correct, and why?
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16. Give the command

uwork = gepp steps chop([ A2 b2]) ;

Observe again the process of Gaussian elimination with partial pivoting. Look especially
for the appearance of small pivots. Record the final result

uwork =





Identify any qualitative differences between this augmented echelon matrix and the one
you found in part 6.

Can you see any possible explanations for these differences? Specifically, if this echelon
matrix still has one or small pivots, why did partial pivoting not prevent that from occur-
ring?
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17. Next, give the commands

A = A2 and b = b2

and then: fpsolve chop

x̃23 =




Compare this answer to the one you computed in part 15. How many correct digits does
this solution appear to have? What, if anything, does that suggest?

18. Study the MATLAB m-files time ge.m and time solve.m, until you feel you under-
stand what they are computing. Then run each (you’ll have to be patient), and observe
the resulting graphs. What do these indicate.

How are these results consistent with theory?
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